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Topological models of ZD cellular structures: 11. z 2 5 
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Ecole des Mines, F-54042 Nancy-Cedex, France 
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Abslraet. Topological models of 2D cellular structures are associated with planar tessella- 
tions with topologically unstable sites which belong to r > 3  polygons. This degeneracy is 
removed by replacing every z-vertex by r -3  added sides. A method which uses the diagonal 
triangulation of the dual tiling is also described. The number of stable configurations, 
called states, is enumerated and various distributions which characterize there slates are 
calculated as a function of i. Topological properties of the associated cellular structures 
are derived ior a disrribution o i  equiprobable and independenr scares on the various sites 
and for z ranging from 5 lo infinity. The distributions P ( n )  of the number n of cell sides 
for the latter distribution of states are typical of the P ( n )  of planar cuts of polycrystals 
and differ from the P(n) of soap froths. Deviations from the Aboav-Weaire relation, which 
describes the correlations between nearert-neighbour cell^, occur mainly for n = 3 and n > 9. 

1. Introduction 

In  a previous paper (Le Caer  1991, referred to hereafter as  I )  we described a method 
for constructing topological models of cellular structures and  we applied it  to 2~ 

structures. The  models a re  topological as they only yield the relative repartition of 
cells and d o  not need or  provide information about angles and  edge lengths. The 
method is based on lattices with topologically unstable sites, which belong to more 
than z ,  polygons (z. = 3 in ZD), and on rules which allow removal of this degeneracy. 
For every value of the vertex coordination number (or valence) z (2-vertex) and for 
a given rule, there are Q ( z )  stable arrangements, called states, built from 3-vertices 
only. Cellular models a re  associated with distributions of states on the lattice sites. 

In paper I, the stable configurations a re  obtained by replacing every z-vertex by 
2 - 3  sides ( ihompson 1917, chapter 8, figure 158, Aimgren and i a y i o r  1976, and I). 
In that case, the set of states is closed with respect to neighbour switching ( I )  which 
is one of the two basic topological transformations in 2~ cellular structures (Weaire 
a n d  Rivier 1984, table I ) .  As the chosen rule does not create or annihilate cells, a cell 
of the topological cellular model is associated with every polygon of the lattice. Every 
state is characterized by a z-dimensional vector S, ( k  = 1, .  . . , Q ( z ) ) ,  whose com- 
ponents Skj ( j  = i ,  , . . , z j  have vaiues in ihe range from i to z - 2. Skj is the number 
of vertices that polygon number j will have at the considered lattice site in the final 
stable arrangement (figure I ) .  Some constraints on the components are described in 
appendix 1 .  The state components allow us to calculate the number n of sides of the 
cell (n-cell) and define its neighbours (appendix I ) :  n is the sum of the S ,  values 
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Figure 1. Examples of distributions of states for: ( U )  z = 5, with the numbering convention 
(circled numbers) and values of the number n of  cell sides (boxed numbers) obtained by 
summing up the S ,  values inside the corresponding squares and triangles. Stable canfigur- 
ations have been drawn: bald lines represent the added cell rides. ( b )  A cellular structure 
consistent with the distribution of states of (01. 

which are inside the subject lattice polygon (figure I ) .  I t  is therefore unnecessary to 
perform the transformation to the stable cellular structure in order to investigate its 
topological properties and full profit can be taken from the use of a periodic lattice. 
As the stable structure at the subject lattice site consists of 2 - 2  trivalent vertices, the 
sum 

is independent of the state: all vectors V ,  = S L - ( 3 z - 6 ) D , / z ,  where D, = 
( 1 , 1 , 1 , .  . . , I ) ,  belong to a hyperplane perpendicular to D,.  A ‘configuration’ {SA} has 
been defined in paper I as the subset of states whose component values (SA,) coincide 
by a circular permutation in the positive sense of rotation. We need to find in the set 
of states all states deduced from any of them by circular permutations, in both senses 
of rotation, as required by the statistical equivalence of all z polygons at any Vertex. 
As a consequence, the set of component values S,, for a fixed j is the same for all j .  
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For  example, Q(7)  = 42 with 1 s S,  s 5 and six configurations are obtained: 

[{ 151222213 [{1223124}, {1322142}] 

[{1231314), {1313214]] [{  1232133}]. 

The second and third, fourth and  fifth configurations respectively are exchanged by a 
circular permutation in the negative sense of rotation while the first and the sixth are 
invariant by such a permutation. It is therefore better, in contrast to paper I ,  to define 
a configuration [S,] by using the circular permutation in both senses of rotation. For 
a fixed value o f ]  (from 1 to 7), there are 14, 14, 9, 4 and 1 component values of I ,  2, 
3, 4 and 5 respectively among the 42 possible values of S,. 

Topological characterizations of cellular structures usually include the determina- 
tion of the distribution of cell sides P ( n )  a n d  of the n-dependence of the mean number 
"(1) of sides of the first neighbour cells of n-cells. The Aboav-Weaire law (Aboav 
1970, 1980, Weaire 1974), expresses that m,(l) is linearly related to I / n  by 

m,( I )  = 6 - a  +(6a + F 2 ) / n  (2) 

where f l L 2  is the variance of the distribution of n :  ~ ~ = ( n ~ ) - ( n ) ~ ,  with (n )=6  as  a 
consequence of Euler's relation in  213 (Weaire and Rivier 1984) and (nm,( 1))= wL2+36 
(Weaire 1974). In many natural random cellular structures, the parameter a is of the 
order of 1.2 (Aboav 1980). 

The case of the square lattice or  of any lattice topologically equivalent to it ( z  = 4) 
has been discussed in detail in paper 1. The model has been observed to account 
reasonably for some experimental o r  simulation results ( 4 s  n s 8 ,  Q(4)=2) for a 
distribution of independent states at every lattice site with a single parameter, the 
probability p of finding one  given state at any site. Agreement with other experimental 
results not quoted in  paper I for z = 4  may be of interest: the model ( p  =0.831) gives 
a very reasonable account of the topological properties of the cellular domain patterns 
in magnetic garnet films for a zero bias field (Babcock et a1 1990). The main differences 
from the latter experiment results are that P(4)  is predicted to be 0.02 instead of zero 
a n d  that the calculated m,(l) are systematically larger than the experimental ones but 
by only 1% on the average. For independent states on a square lattice, the best 
least-squares fit of the theoretical nm,(l) to the nm,,( 1) values calculated from equation 
(2) gives a[nm.]= 1.5, for all p ( D  Frdser, personal communication), while a direct 
fit of "(1) with equation (2) gives a[m"] which depends on p (equation (10) of paper 
I). These differences arise from an n' weighting of the first method with respect to the 
second. If m,(l) does not follow the Ahoav-Weaire relation exactly, significantly 
different values of 'a' may be obtained from different least-square fits to the data 
(section 3.2, see also Fraser 1991). 

Only preliminary results were given for z 3 5 .  In order to study the variability of 
their topological properties, in the present paper we shall study the cellular structures 
which result from a distribution of equiprobable and independent states (called DIES) 

on the vertices of various regular or  quasiregular tessellations with z from 5 to infinity. 
In section 2, we establish the expressions which allow the calculation of Q ( z )  and the 
distribution P,,(i, z )  ( i  = 1, .  . . , 2-2) of the S,, values for a fixed J as a function of z. 
In  section 3, we obtain the side distribution P ( n )  and m,,( 1) for the previous structures. 
Thevalidity of the  Aboav-Weaire law is discussed. In  section 4, the derived distributions 
are compared with the P ( n )  calculated by various authors to model cellular structures 
and  theirgrowth and  with experimental results obtained from planar cuts of polycrystals 
a n d  from soap froths. A possible link between models and actual structures is discussed, 
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2. Enumeration of states 

Every added side is connected at least to One added side for z > 4 (figure 1) and the 
associated graph is a connected graph without cycles, that is a tree (Berge 1970, Essam 
and Fisher 1970). The number of states Q ( r )  is the number of configurations of added 
sides with their z incoming sides (figuye I ) .  The graph associated with any state has 
z monovalent external vertices and z - 2 trivalent internal vertices as all states are 
structurally stable. The states can be constructed by taking all possible planted trivalent 
trees or binary trees with z - 2 internal vertices (Knuth 1973, Viennot 1990). As described 
by Gardner (1976) and by Cohen (19781, the construction of planted trivalent trees is 
related to Euler’s polygon-triangulation problem which searches for the number of 
ways by which a fixed convex polygon can be divided into triangles by non-intersecting 
diagonals (diagonal triangulation, Cohen 1978, appendix I ) .  The number of planted 
trivalent trees with 2-2 internal vertices is given by a Catalan number C;-, (equation 
(3), Knuth 1973, Gardner 1976, Cohen 1978, Viennot 1990): 

Q ( z )  = C,_,= C;;!,J(z- I ) .  (3) 

When z+m, the number of states Q ( z )  is well approximated by Q ( z )  =4z/{7r’’223/2} 
(Knuth 1973). Q ( z )  increases exponentially, being 2, 5, 14, 16796 and 0 . 5 7 7 4 ~ 1 0 ~ ~  
for r = 4 ,  5, 6, 12 and 100 respectively. Binary trees have recently been used by 
Vannimenus and Viennot (1989) to analyse tree-like patterns in physics, such as ZD 

diffusion-limited aggregation patterns. The case of equiprobable states corresponds to 
the ‘random binary tree’ for which all possible binary trees are considered with the 
same weight (Vannimenus and Viennot 1989). 

We will derive equation (3) by a different method which enables us  to calculate 
P,(i,z),thedistribution of i = S k i  ( k = l ,  ..., Q ( z ) ,  i = l ,  . . . ,  z-2)foraf ixed j which 
may take any value in the range 1, , z. Po( i, z )  does not depend on j .  River networks 
containing no lakes, islands or junctions of more than two streams may also be 
represented by planted trivalent trees (Shreve 1966, 1967, Moon 1980, Viennot 1990). 
A network may be obtained here by considering any  state and by choosing any external 
vertex as the outlet. Shreve (1967) has associated a round trip with every network: one 
starts at the outlet and traverses the network always turning left at internal vertices 
and reversing directions at external vertices, until the outlet is again reached. A sequence 
of I = + I  and E = -1  is generated by recording an I the first time a given internal 
vertex is traversed and an E the first time a given external vertex is traversed (figure 
2 ( a ) ) .  The sequence is composed of (z -2) I and of ( z -  1) E (as no E are associated 
with the outlet). All walks begin with an I and end with two successive E. Moreover, 
the partial sums s, obtained by summing up all the + I  and - 1  collected up to step i 
since the start of the walk can never be negative except at the last step where the sum 
is -1 (Shreve 1967, figure 2(b ) ) .  A similar walk, found by Lukasiewicz, in which a 
worm crawls up the trunk and around the entire tree, is also described by Gardner 
(1976). This walk may equally be considered as a 113 random walk with a reflecting 
barrier. An example is represented graphically in  figure 2(b), starting from the origin 
0 ( x = O , y = O ) ,  going to ( I ,  1 )  f o r i =  1, and finishing at F ( x = 2 ~ - 3 , y =  I ) .  There 
are c : - ~  (equation 3) paths such that s, 30,. . . , s2i-s 20 among the L ĵi-_Z., paths joining 
the origin to the point 2(z-2) of the x-axis (Feller 1957, theorem 2, p 71, Cohen 1978, 
P 37). 

In  order to calculate P,,(i, z ) = n ( i ,  z ) / Q ( z ) ,  we only need to consider the paths 
which begin with a sequence of i l ( i - I )  values followed by one E ( - I )  at least (Skj = 
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(a1 

Figure 2. ( a )  An example of a state for * = I 4  (inspired by figure I of Shreve 1967). 
0 indicates the chosen outlet. Arrows have been drawn from 0 to the first external w n c x  
reached during the round trip. ( b )  The path from 0 to F associated with the round trip 
of ( a ) .  (c )  The reversed path from F to M, obtained from ( h ) .  

i , M , , x , = i + l , y , = i - 1 )  (figure 2(h)). It is identical to calculate the number n ( i , z )  
of reversed paths, starting at the end F taken as the origin (x '=  0, y '=  0) and finishing 
at M ,  ( x ! = 2 ~ - 4 - i , y ; = i )  with the conditions S { > O , . . . , S ~ ~ - ~ + ~ > O  (figure 2(c)). 
The number of paths is 

n ( i ,  z )  = { i / ( z  -2)]c;2+, (4) 

(Feller 1957, the ballot theorem p 70, Cohen 1978, p 38). There may be  more than one 
path from 0 to M ,  as one can insert the E at various positions in the series of I. With 
any of these paths from 0 to M ,  are associated n ( i ,  z )  paths from M ,  to E This 
explains simply why n(1 ,  z )  = n ( 2 ,  z )  as all states whose first component is S,, = I are 
associated with paths beginning with the sequence IEI ( s3>O)  while those for which 
& , = 2  give rise to the sequence I I E ;  M ,  is identical for both cases. Combining 
equations (3) and (4), we finally write Po(;, z )  in a form convenient for computer 
calculations ( z > 3 ,  P,(1,3)= I ) :  

Po(l ,  z )  = P0(2, z )  = (2- 1)/(42- 10) 

(5) 
1 - 0  

~ " ( i ,  Z) = ~ " ( 1 ,  z){ i / Z G }  n [ ( z -  1 - ~ - k ) / ( 2 z - 3  - 2 k ) l  
P = 2  

where G = [ i / 2 ]  is the integral part of i/2 and i 2 3. When z + a, we obtain the result 
quoted in paper I :  

~ , ( i , m ) = i / P ' .  (6) 

As P,(1,z)=P0(2, z ) ,  P ( 4 ) = 3 P ( 3 )  for a IIIES on the vertices of any triangular 
tessellation. 

The conditional distributions PILl(jli,  2). which is the probability of finding a 
component S,,,+,= i knowing that S,,, = . j  for a given and  fixed m ( k  = 1 , .  . . , Q ( z ) ) ,  
are  helpful in order to calculate m , , ( l ) .  The distribution PILI does not depend on m 
(= 1,. . . , z ) ,  L varies from -[z/2] to [ 2 / 2 ] ,  while m +  L is defined on a circle and 
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ranges from 1 to z. For L =  1, we consider all states with a first component S, ,  = j and 
a second component S k 2 =  i. The associated paths begin with the sequence 
I . .  . I E I . .  . I E  where the first sequence of I has a length j and the second one a length 
( i -  I ) .  Using reversed paths, as before, from F, as the origin, to (x’=22-4- i - j ,y ’=  
i + j - 2 )  we calculate the number n , ( j l i ,  z )  of paths ( 2 2 4 ) :  

(7)  
n,(jli,  z) = {( i + j  - 2 ) / ( z  -3)}C5;-s+, 4 

P,(jli, z ) =  ndjl i ,  z ) / n ( j ,  2) 

and 

(8)  

where n ( j ,  z )  is given by equation (4). The latter distribution takes a simple form for 
j = l , 2 :  

P,( 11 i, z) = Po( i - I ,  z - I )  (9) 

P,( 111, 2 )  = 0 P1(z-2li, z ) =  J , , .  (10) 

P, (2 / i , z )=P0( i , z - l ) .  

The previous relations give, as expected, 

A similar calculation gives P2(lli, z ) =  Po(i, 2 - 1 )  (appendix 2). When z-a?, 
P,(2)i, a?) = P,(IJi, a?) = Po(;, a?) which means an absence of correlations between com- 
ponent 2 and its first neighbours and between component 1 and its second neighbours. 
The coefficient of correlation II of the bivariate distribution 

&(j, i, z)=  pl(jlf, ZIP&,  2) 

is negative: II=-(2+6)/(42-6) .  
We associate with any distribution of states a distribution Fo(i, z) ( i  = 1,. . . , z -2) 

which gives the fraction of component values S ( m ,  j) which are equal to i, averaged 
over all lattice sites (labelled by m) and over all z polygons at every z-vertex: 

For z S  5 ,  Fo(i, z )  = Po(i, z), as there exists only one configuration for such valences: 
[ I l l ] ,  [1212], [I22131 for z = 3 , 4  and 5 respectively. We deduce from equation ( 1 )  that 

:-2 

( i )  =av(z, 0) = 1 iF,(i, z )  = (3z-6)/2. (12) 
, = I  

Relation (12) holds for any distribution of states as it holds for every state at every 
lattice site. It is a consequence of Euler’s relation in ZD, which requires that ( n ) = 6 ,  
as it contributes to the sum which gives the total mean number of sides. Expressions 
involving the ratio (z -2) /z  are frequently met in the study of tilings (Griinbaum and 
Shephard 1987). Equations ( I  I )  and (12) are easily generalized to lattices which include 
vertices with different valences. The average (i(j ,  z, 1 ) )  of the distribution P,(jli, z )  is 
( 1  S jS 2 -2): 

( 1 3 )  

This relation, consistent with the negative value ofII, helps to explain why few-sided 
cells have many-sided neighbouring cells. Complementary results about the previous 
distributions are given in appendix 2. Section 3 is devoted to the calculation of 
P(n) and of m,( l )  for 2 2 5  and to the application of equations (5)-(13)  for large 
values of z. 

( i ( j ,  z, 1)) = av(j, z , I )  = [(j+ l)/j1{(2z -j -4) / (z  - 1)). 
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3. Tessellations with z 2 5 

3.1. z = 5  

Figure l ( a )  shows a lattice with z = 5  (9(5)=5) which is topologically equivalent to 
a basic net occurring in complex alloy structures (Frank and Kasper 1958). The polygons 
are either squares or triangles with respective proportions pc = 1/3 and pT = 213. From 
equation (121, we deduce that ( n ) = 9  (4pc+3p,)/5=6, as required. As explained in 
paper 1, the z lattice cells which meet at a z-vertex are numbered, if necessary, from 
1 to z according to the following convention: a reference vertex is defined (figure 
l (a)) .  The numbering at every z-vertex is obtained by rotating the reference vertex 
and its z incoming sides in the positive sense by the smallest angle which brings both 
configurations into coincidence. We number the five states as follows: 

SI =(12213) S2 = (13122) S3=(31221) 

S4=(21312) S5= (22131) 
(14) 

and we associate the probabilities p !  ( i  = 1,.  . . , 5 )  with them. Defining 

9.. 'I ' p p .  ' I  (15) 

we calculate, for independent states; 

112 = 2 P : + 4 ( P : + P : ) / 3 + 2 8 ( P : + P : ) / 3  +4(9,3+ 9 2 4 +  945) + 8(q12+ 9 1 m  

-4(913+ 91s)/3 + 16(9,s + % J / 3  + 1693,. (16) 

A microcomputer program, which constructs all possible configurations of states, has 
been used to calculate P ( n )  and "(1). Table 1 gives P(n) and "(1) for a DIES and 
for a distribution of independent states which favours the n = 6 class ( p ,  , p 2  = p , ,  p4 = 
ps  =0.5(1 - p , )  - p 2 ,  p, >p2>p4) .  Relations (12) and (13) allow us toshowthat m, ( l )  = 8 
and m12(l) = ( 2 4 + 2 4 ~ 9 / 5 ) / 1 2 = 5 . 6  for the former distribution. Table 1 also gives 
m,(l) calculated from equation (2), where a =  a[nm.] is obtained from a weighted 
least-square fit of the theoretical nm,(l) values while a[m"]= 1.177. The values in 
brackets represent the range of a[nm.] obtained for two different weights, w ( n )  = P(n) 

Table I. Distribution ofthe number of cell sides P ( n )  and m,,(l) (theoretical and calculated 
fromequation(2))farr=Sand (1)p,=0.2forall;,p,=194/75=2.58667,a[nm,,]=1.200 
( I . 1 9 ~ 0 , O l )  ( o [ m , , ]  = 1.177); ( 2 ) p ,  =O.4 ,p ,=p,=0.2 ,p ,=p5=O. l ,  p2 = 137175.. 1.82667. 
a[,",]= 1.214 (1.212*0.003). 

~ 

3 
4 
5 
6 
7 
8 
9 

IO 
I I  
I2 

~ 

0.0427 
0.1365 
0.2261 
0.2389 
0.1813 
0.1045 
0.0480 
0.0171 
0.0043 
0.0005 

8.000 
7.269 
6.772 
6.432 
6.185 
6.012 
5.889 
5.795 
5.700 
5.600 

8.062 
7.246 
6.757 
6.431 
6.198 
6.023 
5.887 
5.779 
5.690 
5.615 

0.0180 7.833 7.823 
0.1160 7.042 7.064 
0.2301 6.626 6.608 
0.2915 6.304 6.304 
0.2153 6.084 6.087 
0.0964 5.91 1 5.925 
0.0243 5.811 5.798 
0.0067 5.710 5.697 
0.0013 5.637 5.614 
0.0003 5.533 5.545 
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(table 1) and w ( n ) = l .  A further example is p ,  = O S ,  p 2 = p 3 = 0 . 2 5  for which p ( 5 ) =  
0.1875, P(6)=0.3411, P(7)=0.2187 and a[nm.]=1.20*0.04. As for z = 4 a n d p # 0 . 5  
(paper I), the theoretical "(1) seems to oscillate around a c t d J n  curve which is 
well approximated by the Aboav-Weaire law. I t  is therefore likely, as in the former 
case, that there is no simple expression giving m*(l) as a function of n. 

3.2. z = 6  

A microcomputer program constructs all the possible (Q(6))'=2744 configurations of 
states on a triangle and calculates P ( n )  and "(1) for any distribution of independent 
states on the lattice sites. 

Table 2 gives P ( n )  and m,( l )  for a DIES: a direct calculation, with ( i )=2 ,  
( i ( l , 6 ,  1))=2.8, in fact gives m 3 ( l ) = 2 x 2 . 8 + 2 = 7 . 6 ,  m,(l)=(7.6+6.6)/2=7.1,  
m, , ( l )=62/11=5.6363 and m , , ( l ) = ( 3 x 8 + 2 1  x2) /12=5 .5  (see also appendix I ) .  
Deviations from the Aboav-Weaire relation explain the large difference between 
a [  nm.] = 1.2414 and a [  m,] = 0.9743. They occur mainly for n = 3 and n > 9 as also 
observed for soap froths (Aboav 19801, for simulations of vertex models (Nakashima 
er al 1989), for the random Voronoi froth as well as for the Voronoi tessellation 
generated from eigenvalues of complex random matrices (Le Caer and Ha 1990). 
similar deviations from the Aboav-Weaire relation are also observed for non-equiprob- 
able states, for example, when different weights are given to each of the three configur- 
ations [141222], [I231231 and [131313]. 

Table 2. Distribution or the number of cel l  sides: U )  P ( n ) = 2 7 4 4  P(n) and m,>(I )  for 
i = 6 a n d a  D l E s o n a  tr iangular lat t icep.=l / l4( i=1 ,  . . . ,  14). . ,=18/7=2.57143. For 
equation (2). a[m.]=0.9743. 

3 125 7.600 1.831 
4 375 7.100 1.130 
5 600 6.740 6.709 
6 650 64-52 b.42Y 
7 5 1 0  6.246 6.228 
8 300 6.06s 6.078 
9 132 5.909 5.961 

I O  42 5.771 5.867 
1 1  9 5.636 5.791 
12 I 5.500 5.721 

3.3. z,=12, z2=6, z , = 4  

A planar tessellation by triangles whose vertices belong respectively to z = 12, 6, 4 
.-:-..-I-- ,P , 0 7 9  _ L ?  - - A  c I___^ 1 ,-,, I.̂̂ ^ I " ^  I.,.".. :-,,"".:--.e.4 A r  II ,,,,- rrrarg,rc* (Luxcrcr ,7, , ,  v u ,  d,,U , l 8 , u , G  '(U,, I,*> dlJU UGC,, ,,,"G>U&'l,G". r,D VI.&, - 
16796, P ( n )  has only been calculated for a DIES with the help of equation ( 5 )  
( p 2 =  3.126 37, table 3). The most probable number of sides is now n = 5. Using 
equations (12), (13) and (A1.2), we calculate m,,(l)  (table 3). As before, deviations 
from the Aboav-Weaire law occur mainly for small and large number of sides (a[%] = 
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Table3. Distribution of the number of cell sides: a i  P ( n l = 4 7 0 2 8 8  P(n1, , ~ = 3 . 1 2 6 3 7  
and "!,,(I) for a DIES on the vertices u f a  12-6-4 lrssrllalion (o[m,,]=0.7905, [mm,,]= 
1.0507). 

3 24310 7.5030 10 I1  198 6.0601 
4 72 930 7.0030 I I  4 434 5.9457 
5 104676 6.7336 I2 1492 5.8301 
6 102 674 6.5373 13 412 5.7149 
7 76 791 6.3927 14 nx 5.6006 
8 46 761 6.2812 15 13 5.4872 
9 24 508 6.1720 16 1 5.375 

0.7905, n [ n m , ]  = 1.0507). For the tiling with 24-4-4 and 24-6-4 triangles in equal 
proportions described by Griinbaum and Shephard (1987, p 192) we calculate P(5)  = 
0.2282, P ( 6 )  =0.2012, p2=3.753 57 (see also figure 7) and m,( l )  = 7.301 for a DIES. 

3.4. 2-4-4 and z-z 

The P ( n )  distributions of cellular structures associated with the two planar tessellations 
of figure 3, called here 2-4-4 and z-z, may also be obtained, in the limit z+m, from 
two spherical tessellations for which (n),= 6. The latter consists of z half great circles 
which share two poles. The first tessellation moreover includes an equatorial circle. 

The properties of such 'Big Bang' structures which emerge from the unfolding of 
structures mainly crumpled into two unstable points are also worth investigation. 

3.4.1. 2-4-4. The valence is (figure 3 ( a ) )  

z = 8( l + n , )  

I I ~ I  I Ibl 

Figure 3. ( a i  2-4-4 tessellation for 2 = 16 ( the  numbering convention is given in figure 
4(b)) .  ( b )  1-1 tessellation for r = 2 4 .  
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where 8 accounts for the contribution of the sides and diagonals of the square lattice 
and n4 is the number of remaining segments in every octant (n ,  = 1 for figure 4(b)). 
As we deal only with the limit z+m, we d o  not need to take into account the 2-2-4 
triangles (fraction 8 1 2 ) .  A possible numbering convention is given in figure 4(b). 
Defining p as the probability of a state chosen arbitrarily among the two states (1212) 
and (2121), we use equation (6) t o  obtain 

R = P ( ~ - P )  P(3)  = R I 4  P ( 4 ) = ( 1 - R ) / 4  
(18) 

P (  n )  = { n( R + 2 )  -6-6R}/2"-'  n 3 S  

and w2=4+2R,  for a DIES on the z-vertices, a distribution of independent states on 
the 4-vertices and z + m. The maximum P ( n )  is obtained for n = 5 while P(6) = 0.1875 
is independent of R. For R =0, P ( n )  is simply written as 

P(n)=(n-3)/2"-2.  (19) 

If we let z + m  for the state (1 ,2-2,1,2,  . . . ,  21, we deduce that m,(1)=2+3=5, 
where 3 comes from the application of equation (12), valid for any distribution of 
states, to two tetravalent vertices. The same result holds for tilings with (z-zl-z2-, . . - 
etc) polygons where z l ,  2 2 , .  . . , etc remain finite only while z-m. For example, a 
tiling with 2-6-3 triangles and 3-3-6-6 quadrilaterals ( (n)=6)  is easily derived from 
the spherical tessellation 2-4-4, by erasing an arc of half of the great circles in order 
to replace one-half of the tetravalent vertices by two trivalent vertices. This will create 
3-3-6-6 quadrilaterals while trivalent and hexavalent vertices will alternate along the 
equator. The same tiling is also easily constructed from figure 3(a). The derivation of 
the Aboav-Weaire relation also yields mm( 1) = 5 (Weaire 1974, Blanc and Mocellin 
1979, Rivier 1985); it is obtained for cellular structures in statistical equilibrium under 
the two elementary topological transformations, neighbour switching and face disap- 
pearance. It implies that a = 1 in relation (2). For R # 0, m3(1) = 22/3 = 7.333 is 

(01 1 2 - 6 - 4  < z - 4 - 4  

\ 

3 1  B 4 

Figure 4. ( a )  A triangle (filled) and its 16 neighbours in a 12-6-4 tessellation. i b l  The 
numbering convention for the '2-4-4' tessellation of  figure 4 ( a ) .  One rotation 0190" in the 
positive sense allows us to obtain a complete numbering. 
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calculated with the help of relations (12) and (13) while we expect 8.333 < m,(l)  s 8.5, 
according to the value of p .  from relation 2 with a = 1. 

In his statistical crystallography theory of random cellular networks, Rivier (1985) 
has determined the equilibrium structures using maximum entropy inference under 
few constraints such as space-filling, Euler's relation, correlations between cell sizes 
and shapes, etc. When the latter constraint is the Lewis law which relates the mean 
area of n-sided cells linearly to n, the resulting structure, called 'ideal' by Rivier, has 

P(n)=constantx(n-no)  exp(-cn) (20) 

with n ranging from n ,  to 00. For no = 3 and consequently n, = 4, the maximum entropy 
distribution 20 has c = log 2, p2 = 4 (appendix B of Rivier 1985) and is surprisingly 
given by (19) which is obtained without metric constraints. This coincidence is probably 
accidental and does not hold for R # 0. Figure 5 nevertheless shows that both distribu- 
tions, with fi2=4.5, differ little for n a5 when R =0.25 in (18) and n,=2.9302, 
exp(c)= 1.9403 in (20). 

3.4.2. z-z. The valence is given by relation (17) where nq is now the number of arcs 
in every octant (figure 3(6)). The tiling consists of 2-z-4 triangles (proportion 8 / z )  
and of z - z  two-sided cells. The distribution of the number of cell sides for a D I E S  and 
z + m  is 

n - l  

p ( n )  = 1 Po(;, m)P,(n - i, m) = n(n'- 1)/(24x 2") n 2 2  (21) 
, = I  

with p2 = 8. We have also computed P (  n, z )  and we compare in figure 6 P (  n, 40) with 
P ( n )  for a 2 0  Johnson-Mehl froth investigated by computer simulation by Frost and 
Thompson (1987). This grain structure with hyperbolic grain boundaries, concave cells 
and lenses (n =2),  results from continuous nucleation with constant growth rate. 
Nucleation sites are implanted in space and time according to ZD and I D  Poisson point 
processes respectively. The distribution (21) differs little from the Johnson-Mehl 
distribution. From (12) and (13), m2( l )  is 

m2( 1) = 4(2?- 5)/(z - 1)  +6 / (  z -8 )  (22) 

Figure 5. Distribution P ( n )  of the number n of cell rides for a m-4-4 tessellation with 
p = O . 5  (crosses, equation (18)) and for the maximum entropy distribution of an 'ideal' 
stru~ture (Rivier 1985) with the same f i?  =4.5 (open circler, equation 120) with n,,=2.9302 
and e 5 0.6628). 
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1 . 
0 

0.08 

0,04 

(-7.835 for z = 4 0 )  and tends to 8 for z+W.  As m,( l ) -9 .6  for the Johnson-Mehl 
structure (figure 12 of Frost and Thompson 19871, we conclude that the topological 
properties of these two structures differ. 

4. Discussion 

4.1. Characteristics of the topological modelsfor z a . 5  

For a distribution of equiprobable and independent states on the sites, the results of 
section 3 may be summarized as follows for z 2 5. 

(i) The distribution P(n1 has a maximum value which is less than 0.30 and ranges 
from -0.20 to -0.25. The mode is n = 6 for the smaller valences and changes to n = 5 
when z increases. 

(ii) P ( n )  and more generally the topological properties are not strongly sensitive 
to the starting lattice. 

(iii) pL2 tends to increase and m l ( l )  tends to decrease when z increases. 
(iv) For z = 5, the Aboav-Weaire relation constitutes a very good approximation 

of the n dependence of m n ( l ) ,  with a coefficient a - 1.2 as found in natural structures 
(Aboav 1980). Deviations from this relation occur mainly for n = 3 and for n 3 9  when 
2 2 6 .  

lne  distriiiutions P i n  j are typicai of the distriiiutions found experimentaiiy for the 
grain structures which results from planar cuts of polycrystals (Hu 1974 (Fe), Blanc 
and Mocellin 1979 (alumina), Fradkov et a1 1985 (AI), Glazier 1989, Righetti et a1 
1991 (alumina)). The experimental distribution P ( n )  for zone-refined iron isothermally 
annealed at 650 “C for 125 min (Hu 1974) is, for example, compared in figure 7 with 
P ( n )  calculated for a mixed (26-6-4,26-4-4) tessellation (section 3.3). The correlations 
navr nul ueen uerermineu in ail me previous expcrimrnis. r u r  alumina (nignerri ei ui 
1991), a [ m . ] =  1.12, 1.07 and a [ n m , ]  =0.94, 0.99 for weights 1 and P ( n )  respectively. 

-. 

J ~ . ~ ~ ~ ~ ~ I ~ - > I ~ ~  I I I L . ~ -  : .~ 7 . ~  , _ . ~ I ~ ~ . . .  

I Y I 
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The m,(l) values for the domain structure in this films of glassy As2Se, (Chen et a1 
1984, see figure 3 of paper 1 for P ( n ) )  are =7.03, 6.59, 6.33, 6.07, 5.95 and 5.80 for n 
ranging from 4 to 9. The latter m , ( l )  are strikingly close to the values given in table 
1 for distribution no. 2. For a DIES, the results differ, whatever the considered lattice, 
from the experimental observations for soap froths (Glazier et a1 1990) with, for 
example, P(5 )  = 0.314 and P(6 )  = 0.305. 

The P(n) of section 3 are also quite similar to the P ( n )  yielded by various structural 
models of polycrystalline grain growth (see Atkinson 1988 for a recent overview with 
a classification of models and Glazier et a/  1990 for a compilation of typical P ( n )  
distributions). The side-cell distributions for one of the two maximum configuration 
entropy models of Kikuchi (1956, Glazier et a1 1990) and for a DIES on a z = 5 lattice 
are almost identical. Moreover, the distributions of section 3 do not differ crucially 
(figure 8 ( n ) )  from the distributions derived from vertex models which are based on 
equations of motion for vertices (Soares et a /  1985, Nakashima et a /  1989) or from a 
Potts model, with nearest-neighbour ferromagnetic interactions, on a triangular lattice 
at T =  0 (Sahni er a /  1983). 

0.10- 

0,os- 

0 . . 
0 

0 . 
0 . 

0 
o o  

- I  n 

Figure 7. Distributions PI") of the number n ofcell sides for cone-refined iron isothermally 
annealed at 650°C fur 125 m n  (full circler, H u  1974) and fur a DIES on the vertices of a 
26-6-4, 26-4-4 tiling (open circler). 

4.2. The relation between the topological defect concentration C and pL1 

Carnal and Mocellin (1981) have investigated the conditions which must be fulfilled 
by the distributions P ( n )  in random plane sections of polycrystals evolving by the two 
elementary ZD topological transformations (neighbour switching and face disappear. 
ance, Weaire and Rivier 1984, paper I )  in order to remain invariant during grain 
growth. The variance of P ( n ) ,  p2 and the topological defect concentration C 

2 = 3 P ( 3 ) + 2 P ( 4 ) + P ( 5 )  (23) 
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are not independent in their model. We show in figure 8(b )  the very regular behaviour 
of C(pJ  for the topological models when z increases from 4 to CO. For z = 4 (0  s p2 G 1) 
and for independent states (paper I )  

C = ( 4 ~ 2 - ~ ~ : ) / 8 .  (24) 
This relation also describes quite accurately the results obtained for states correlated 
on a square lattice according to a nearest-neighbour ferromagnetic king model (paper 
I ,  Delannay et al 1991). 

We present in figure 8 ( b )  ( C ,  pJ points calculated from the distributions P(n)  of 
a number of cellular structures. There is a clear clustering of all points in a narrow 
region of the (C ,  p2)  plane. Such a clustering seems significant. It is indeed easy to 
construct artificial distributions P ( n )  with completely different C ( p 2 )  relations; for 
instance, the distributions P( m )  = P (  12 - m )  = p ,  P(6) = 1 - 2 p  ( m  = 3,4,5) have C = 
p2/{2(6-  m ) }  ( 0 s  p 2 s  (6- m ) 2 ) .  The observed clusteringprobably results from general 
features, not related t o  the actual values of P(n) ,  as the topological models (and the 
maximum entropy model, see below) do  not account for the P(n)  of all structures 
(section 4.2). Only a rather narrow range of C values may be available for ‘reasonable’ 
structures as a consequence of ( n )  = 6 and of n 3 3 for a given p2 in the range 0 to 
-3. By ’reasonable’, we mean for instance structures with ‘smooth’, ‘unimodal’ P(n)  

tions. We have calculated the distributions P ( n )  which are deduced from the application 
of the maximum entropy ( S )  principle ( S =  -I: P ( n ) l o g P ( n ) ,  Jaynes 1957, Rivier 
1985, Maxent on figure 8 ( b ) )  with the sole constraints ( n ) = 6  and ( ( n - 6 ) 2 ) = w 2  for 
n ranging from 3 to CO. The maximum entropy distributions tend to be smooth because 
they tend to have the most nearly uniform distribution satisfying the given information 
(Brand and Le Caer 1988 and references therein). Figure 8 ( b )  confirms that the 
corresponding C(p2) ,  although different, isveryclose to C ( p 2 )  ‘topological’ for p2< 2.5 
while C is larger for the maximum entropy distribution for ~ ~ a 2 . 5 .  The Carnal- 
Mocellin C ( p 2 )  curve ( ~ ~ 3 2 . 5 )  is located between the two previous curves. For 
p 2 a  3.5, the experimental values are satisfyingly accounted for by the ‘topological’ 
C(p2)  line. It is worth mentioning that, for p2G 1, the maximum entropy distributions 
P ( n )  are :my simi!ar :o the p ( z )  ca!c-!at& b a h  f-r ixdepexdent acd fcr correlated 
distributions of states [I2121 on a square lattice (z=4, paper I, Delannay et a1 1991) 
as well as to the P ( n )  observed in some biological tissues (Glazier 1989, table 2 in 
paper 1). The previous structures differ mainly in the intercell correlation ( m n ( i ) ,  i = 
1,. , , ). The P ( n )  differ more and more when z increases: P(5)  > P(6) for ~ ~ 3 4 . 1  for 
the maximum entropy distributions while this happens for smaller values of pL2 (-3) 
for the topological models (table 3). 

&hoc.& these characteristics have to be woyted ;:.hex app!ied != discrete dist:ibu. 

4.3. Some hints about possible connections between the models and actual structures 

The problem of the reverse transformation from a cellular structure to a lattice with 
unstable sites is therefore raised. Although we have not solved that problem, we argue 
below that we do  not need actually to perform unphysical and improbable collapses 
of many vertices (>4) into one in order to use the present models. We ‘only’ need to 
describe the structure as a forest, that is, a disconnected graph whose components are 
all trees (Essam and Fisher 1970), and further to connect the trees by bonds which 
close the existing cells. The latter bonds are the sides of the unconditional neighbours 
(section 3) and they determine the topology of the sought-after tessellation. The group 
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of grains of figure 9 ( a )  or ( b )  may, for example, be described as a juxtaposition of a 
z = 7 state and of other states which will depend on the grains which are at the border 
of this group. Secondly, figure 9 shows that a local neighbour switching (Tl) which 
transforms the group of grains of ( a )  into the group of ( b )  may be interpreted as a 
state 'flipping' at a z = 1 vertex. The proposed description is not unique and states 
from coordination numbers ranging from 4 to >l may be used as well. Agiven structure 

0.051 , j, , , , ,'a. 
0.00 

o I 2 3 4 5 6 7 8 9 1 0 1 1 1 2 t 3 n  

C 

Figure 8. ( a )  Distributions P i n )  of the number n of cell rides for venex models (full 
circles, Kawasaki e1 01 1989, full squares, Saares el al 1985). for a Polls model on a 
triangular lattice (full triangles, Sahni e l  a1 1983) and for a DIES on z = 5 and i = 12-6-4 
(figure 4(a ) )  tessellations (full lines). ( b )  Topological defect concentration C (equation 
(23)) as a function of +, far various ZD cellular ~tructures (crasser and associated full line. 
topological models for z = 4  to m; full circles, polycrystal cuts (Glazier 1989, Righetti CI 

ol 1991b); open squares, various 2~ soap froths. lipid monolayers (Glazier 1989); open 
circle, random Voronoi froth (Le CaErand Ha 1990); full  squares. biological tissues (Glazier 
1989, paper I ) ;  full line (upper line for p > 2 3 ) ,  maximum entropy distribution). 
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can be described as a juxtaposition of states arising from different valences. Among 
all the arrangements, some may possibly be mapped on a tiling topologically closer 
to a ‘regular’ tessellation with a limited number of valences than to a random tessellation, 
as further the topological properties change slowly with 2. Moreover local TI transfor- 
mations may take place without significantly changing the valence distribution. With 
this type of ‘molecular’ description, we may even envisage accounting for structures 
without knowing by which actual transformations they have been produced. How to 
determine the effective z and the interactions between states for an actual given structure 
remain unanswered questions. For cellular structures evolving mainly by neighbour. 
switching transformations (i.e. monolayers of pentadecanoic acid, Stine et a! 1990), 
the average effective valence may be inversely related to the rate of these processes. 

We conclude that the present models, with a DIES on the lattice sites, give a realistic 
description of the topological properties of the cellular networks of polycrystal cuts. 
Correlations among the states must be considered in order to know whether or not 
the models are able to describe the topological properties of soap froths. The method 
may be used, by including some simple metric rules, to produce initial structures for 
dynamical studies. 

5. Conclusion 

Our aims in the construction of controlled models of random cellular networks, 
described in a previous paper and in the present work, have been primarily to perform 
exact calculations of their topological properties in order to compare them with existing 
models. We have deliberately postponed the introduction of physical constraints in 
the models as they may hide the actual origin of some characteristics of the structures 
investigated. To our surprise, the models give an acceptabie description of the iopoiogi- 
cal properties of some natural or simulated cellular structures. Although we feel the 
necessity for deeper explanations, we do not need to put forward unrealistic physical 
mechanisms in order to understand this reasonable agreement if the structure can be 
described as a juxtaposition of states constituting a sufficiently regular forest. The 
structures generated for z P 5 from a distribution of equiprobable and independent 

the subject ‘mother’ lattice. The existence of a lattice and of interactions among the 
states, which would give rise to a distribution P ( n )  given beforehand, is therefore not 
guaranteed. The description of soap froths has not been reached and distributions of 
interacting states on the sites of various lattices will have to be investigated for that 
purpose. 

are &ar.cierized by a variability oftheir topologicaj pioijek,es whatei;?: 
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Appendix 1 

The components of the states must, at least, satisfy the following constraints 
( i )  At least two components equal to 1 (at least two ends). 
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(ii) No two successive 1 (valence = 3 in the final structure). 
(iii) No 121 or 212 sequences for z >  4 (the graph is connected, see also equation 

(A2.3)). 
(iv) As n , ( j l i , 3 ) # 0  (equation (7)) only if z - l a i + j ,  the sum of two successive 

components must be less than z. 
Besides the [ l ,  z - 2 , l  . . . 2 ]  configuration, there is another configuration which can 

be simply constructed. 
(i) If z is even, it consists of two identical groups [ I ,  2 . 3 . .  . 3 , 1 , 2 , 3 . .  . 31 with, 

as a whole, two values of 1, two values of 2 and 2 - 4  of 3. 
(ii) If z is odd, it is [ l ,  2 , 3 . ,  , 3 , 2 ,  1 , 3 , ,  . 3 ]  with two values of 1, two of 2, 2 - 4  

of 3 divided in two groups: one (123 . . . 32 )  with [2/2]-2 and one ( 1 3 . .  . 3 )  with 
[2/2]-1 values of 3 (ex: z = 7 ,  [1232133]). 

The state components can be simply obtained from Euler’s triangulation of a convex 
polygon with z sides by non-intersecting diagonals (Gardner 1976, Cohen 1978): S ,  - 1 
is the number of diagonals at the j t h  vertex of the subject polygon (figure 10(a)) .  

Figure 9. Neighbour switching (+ and -) in a group of  cells in ( a )  which transforms it 
into the group of ( b ) .  This transformation may, for example, be interpreted as a state 
‘Ripping’ from (1313214) to (2214231) (bold lines) on a i = 7  vertex. 

In the following, the state components from 1 to z are written on the vertices of a 
convex z-polygon. At a given lattice site the cell associated with the j t h  sector ( j  = 
1 , .  . . , z), has: 

(i) two unconditional neighbours (ji 1) whose state components are S,,,; 
(ii) S ,  - 1 conditional neighbours. 
Two components S ,  and S,, are conditional neighbours if the vertices j and l of 

the previous z-polygon are joined by a diagonal (jl-diagonal). Neighbour switching, 
which involves four state components S,,, S,, Skr and S,, with, for example, cells j 
and l sharing an added side, is simply performed by erasing the jl-diagonal and drawing 
the im-diagonal. 

Except for small valences or for the ( 1 ,  z -2,  I ,  2 . .  . 2 )  state, it is not obvious to 
find the conditional neighbours among the components of any  state. With any state, 
we associate a z x z neighbour matrix N whose elements are N (  l, m) = N(m, I )  = 1 if 
cells m and 1 (m, l = 1 , .  , , , z,  m it 1) share an added side in the stable arrangement. A 
‘pruning’ algorithm allows us to calculate the elements of N. It is based on the fact 
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that the two nearest non-zero components on both sides of a component S,, = 1, S,, 
and S,, share an added side. If the corresponding branch is cut away from the state 
under consideration, that is S,, and Sk, are decreased by 1 and S k j  is set to zero, the 
remaining graph is still a state with z* S z - 2 and at least two components equal to 
1. The procedure can therefore be iterated until only a z* = 4  or a z * = 3  state is left. 
At every step, all the components equal to 1 are set to zero, all their non-zero neighbours 
are decreased by 1 and the corresponding elements of N are set to 1. The sum of the 
elements of any N matrix is 2 2 - 6 .  At most [(z-3)/2] lines (z>4),  not including the 
last one with z* = 4 or z* = 3, are needed to write these steps. For example, the pruning 
algorithm applied to the z = 14 state of figure 2 ( a )  gives: 

j = l  2 3 4 5 6 7 8 9 10 11 12 I3 14 
1 4 3 1 4 2 2 2 2  1 6 4 2 2  N ( 2 ,  14)= N ( 3 , 5 ) = N ( 9 ,  1 1 ) = 1  Step I 

Step 2 0 3 2 0 3 2 2 2 1  0 5 4 2 1  N(8,11)=  N ( 2 ,  1 3 ) = 1 ,  z * = l l  
hi, ,  , t i -  M t 8 . 7  ?,-, - * = y  

Step4 0 1 2 0 3 2 1 0 0  0 3 3 0 0  N(3, IZI = N(6,11)= I, r'=7 
Step 5 0 0 1 0 3 1 0 0 0  0 2 2 0 0  N(5, I I ) =  N(5, 12)=1.  i * = 5  
Step6 0 0 0 0 1 0 0 0 0  0 1 1 0 0  STOP r * = 3 .  

e.̂  ̂.Xsp _I , a : : a : 2 2 : s  n 6 6 : s  ' ,\'. . . J - , . t . & , A j - L , '  

;- - - -  
' 3  8 

141222 b313131 

2 a2 3@3 

3 1 FZSl23l 2 1 

Figure 10. ( a )  The relation between Euler's polygon triangulation and some stales for the 
case i = 6 (see also Gardner 1976 and Cohen 1978). ( h )  The diagonal triangulation method 
an the honeycomb lattice for z = 6  and some cells of the associated cellular Structure 
(broken lines). 
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At a z-vertex, the contribution of sector number j to the total number of sides of 
the neighbouring cells of the associated n-cell is 

For a DIES and for a fixed value S ,  = i, the average ( V , )  allows us to calculate "(I): 

(A1.2) 

Euler's diagonal triangulation can be used to define an equivalent method of construc- 
tion of the cellular structure. Every polygon of the dual lattice L* of the unstable 
lattice L is triangulated (T) by non-intersecting diagonals. L* is thus transformed into 
TL* whose dual CL is the associated cellular structure (figure IO). A cell is associated 
with every vertex of L*. Its number of sides is equal to the sum of the state components 
or to the total number of sides and of diagonals which merge in that vertex. Figure 
1O(b) shows an example, for z = 6 ,  with a triangulation of the honeycomb lattice. 
Extensions of the method include, for instance: 

(i) triangle creation or annihilation, performed by triangulating (at most once) 
already existing triangles of TL* or by deleting the vertex and the three sides included 
in a triangle of TL* respectively, before constructing CL; 

( V k j ) = 2 i  av(i, z, 1 )  = 2 ( i +  l ) ( 2 z -  i - 4 ) / ( 2 -  1). 

(ii) topological models of 3D cellular structures using tetrahedra. 
The TL* construction may finally be useful for defining metric rules for CL and 

for producing computer images of such cellular structures. 

Appendix 2 

The variances of the distributions Po(i, z )  and P,(jl i ,  z) are, respectively: 

var(z, 0)  = 2( z - 2 ) ( 2 - 3 ) ( 2 2  - 3 ) / { z 2 (  z +  I ) }  

var( j ,  z, 1) = ( z  - 2 - j ) [ 2 z 2 (  j 2 + 3 j - 2 )  - z (  j'+ 1 l j2+22j  - 8) 
+ 2 j (  j + 3 ) ( j + 4 ) ] / { j 2 z (  z - I)'}. 

(A2.1) 

(A2.2)  

Using the method described in section 2, we derive the distribution P(jlkli ,  z)  which 
is the probability of observing a sequence of components ( j k i . .  .) for equiprobable 
states on a z-vertex and for a given k in a fixed position among the z possible ones 
(the result is obviously independent of that position). P(jlkli ,  z )  allows us to calculate 
p2(jli, 2). 

n(jlkli,  z )  = { ( i + j + K  - 4 ) / ( ~ - 4 ) } C ~ ~ ~ ~ ~ , ~ , ~ ~  (A2.3) 

and 

K = k ( l  - J k , )  2-2>. '  - 4 J -  ' > I  except j 3 2 if k = 1 (A2.4)  

where a x ,  is the Kronecker symbol. Using equation (4), we finally write 

P(j lk l i ,  z ) = n ( j / k l i , z ) / n ( k , z ) .  (A2.5)  

As 
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the average of P(jlkli ,z)  is ( i ) = ( j ) = a v ( k , z , l )  (equation 13) and its variance is 
( ( i - ( i ) )z )=( ( j - ( j ) )2)=var(k ,  z, 1) (equation A2.2). The covariance o f the  distribution 
(A2.5) is cov( k, z) = ( ( j  - ( j ) ) (  i -(i))): 

cov(k, z ) =  - ( 2 ~ - 4 - k ) ( z - 2 -  k ) ( 2 ~ +  k [ k + 3 ] ) / ( k 2 z ( z -  I ) * }  (A2.7) 

for  z - 2 2  k 2  2 and 

COV(1, z )  = - ( Z  -4)(2 -3)(2 + S ) / { z ( Z  - (A2.8) 

Summing n(jikii, z )  over k and dividing by n( j ,  z j  aiiows us to obtain 

P2(jli, z) = P, ( j l i+  1, z )+{( j -  l) / j)[(z-2)/(22 -S - j ) ]P l ( j -  11;- 1, z - 1) (A2.9) 

with P,( l I i ,z)=P,( l l i+l ,z)=P,( i ,z- l )  as given in section 2. The average of 
P2(jii, z )  is 

( i( j ,  ~ ~ 2 ) )  = av(j, z,2) 

= [(jt l)/j1((2z - j  -4)/(z - I)]  - a j ,  + [ ( j -  I ) / j l ) ( r  - 2 ) / ( 2 z  - 5  - j ) } .  
(A2.10) 

The random variable nm(n, 1) is the total number of sides of the first-neighbour cells 
of an n-cell and its average is nm.(l). The previous relations can be used to calculate 
the standard deviation sd,(3) of the distribution of m ( 3 , l )  for various tessellations 
and for a DIES: 

sd,(3) = [var(4,O)+var(6, 0 )  +var(l2,0) + 2  var( 1, 12, 1) + 2  var( 1,6, 1) 

1 2  cov( 1, 12) + 2  cov(1, 6)]"2/3 = 0.7781 

for the 12-6-4 tessellation (figure 3(a))  and 
Sdm($ = (2 vai(4, a) +vai(m, 0) +: Vai[:, ~, 1) +: c.v(i, m))l/2i3 

= (7/6)'/2- 1.0801 

for the 2-4-4 case (figure 3 ( a ) )  when z+m.  

Referepnres 

Aboav D A 1970 Mernllography 3 383-90 
- 1980 Melallogrophy 13 43-58 
Almgren F J Jr and Taylor J E 1976 Scienrifie Americon 235 (July) 82-93 
Atkinsan H V 1988 Acta Meroll. 36 469-91 
Babcock K L, Serhadri R and Westervelt R M 1990 Phys. Reo. A 41 1952-62 

Blanc M and Mocellin A 1979 Acto Meroll. 27 1231-7 
Brand R A and Le Cafr G 1988 Nucf. lnrrrum Melhod.7 B 34 272-84 
Carnal E and Mocellin A 1981 Aero Msralf. 29 135-43 
Chen C H, Philips J C, Bridenbaugh P M and Aboav D A 1984 J. Non-Crysfoff .  Solids 65 1-28 
Cohen D I A 1978 Basic Techniques ofComhinoforiaf Ih~heory (New York: Wile?) 
Coxeter H S M 1973 Regular Polytopes (New York: Dover) 
Delannay R; Le CaCr Ci and Khatun M 1991 in preparation 
Essam J W a n d  Fisher M E 1970 Re". Mod. Phyr. 42 272-88 
Feller W 1957 An lnrroducrion Io Probohi1ir.v 7hror.v and i f s  Applicafionr YOI 1 (New York: Wileyl 
Fradkov V E, Kravchenko A S and Shvindlerman L S 1985 Seripra Meroll. 19 1291-6 
Frank F C and Karper J S 1958 Acro Cr?sf. I1  184-90 
Fraser D P 1991 Marerials Chnrocferimrion in D ~ S S  

r,-.-- r I",,, c . " - L - .  ^. u....""-"-..,."" ,"--;?. n 2 1  "...a. L 3 7 , "  ".YP"rr r, "."~rl6'","'C.> , r o r r r .  "YUUV,  



Topological models of ZD cellular srrucmres 4675 

Frost H J and Thompson C V 1987 Acro Meroll. 35 529-40 
Gardner M 1976 Scienr@e American 235 (June) 120-25 
Glazier J A 1989 PhD theris the University of Chicago 
Glazier J A, Anderson M P and Crest G S 1990 Phil. Mag. B 62 615-45 
Griinbaum B and Shephard G C 1987 Tilings and Parrernr (New York: Freeman) 
Hu H 1974 Conadion Merallurgicol Quarterly 13 275-86 
Jaynes E T 1917 Phys. Rev. 106 620-30 
Kawasaki K, Nagai T and Nakashima K 1989 Phil. Mag. B 60 399-421 
Kikuchi R 1956 J.  Chem. Phys. 24 861-7 
Knuth D E I973 The Arr ofCompu!rr Plogmmming YO! !, 2nd edn (Addisan.Wes!ey: Reading, MA) 
Le CaZr G and Ho J S 1990 1. Phys. A: Mnlh. Gen. 23 3279-95 
Le CaEr G 1991 J. Phyr. A: Moth. Gen. 24 1307-17, 2671 
Moon J W 1980 Annals of Discrete Marhemaricr 8 117-21 
Nakashima K, Nagai T and Kawasaki K 1989 J. Srar. Phyr. 57 759-87 
Righetti F, Liebling T M, Le CaEr G and Mocellin A 1991a in preparation 
- 1991b ploc. Inr. Cmf on Groin Growrh in Polycrysrolline Morerialr (Rome June 1991) to be published 
Rivier N 1985 Phil. Mag. B 52 795-819 
Sahni P S, Srolovitz D J .  Grest G S, Anderson M P and Safran S A 1983 Phys. Reo. B 28 2705-16 
Shrew R L 1966 J.  Geology 74 17-37 
- 1967 J. Geology 75 178-86 
Soares A. Ferro A C and Fortes M A 1985 Scripta Meloll, 19 1491-6 
Slim K J, Rauseo S A, M0ore.B G ,  Wise J A and Kobler C M 1990 Phys. Reo. A 41 6884-92 
Thompson D A W  1917 On Giowrh and Form (Cambridge: Cambridge University Press) 
Vannimenus J and Viennot X G 1989 J.  Sror. Phyr. 54 1529-38 
wennot X G i990 Trees everywhere Free CAAPYO Copenhagen May 1990 (ieciurr X o i e s  in Compurer 

Weaire D 1974 Merollography 7 157-60 
Weaire D and Rivier N 1984 Conremp. Phye 25 59-99 

. .. 
Science) in press 


